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We perform a two-dimensional analytical stability analysis of a viscous, unbounded 
plane Couette flow perturbed by a finite-amplitude defect and generalize the results 
obtained in the inviscid limit by Lerner and Knobloch. The dispersion relation is 
derived and is used to establish the condition of marginal stability, as well as the 
growth rates at different Reynolds numbers. We confirm that instability occurs a t  
wavenumbers of the order of E ,  the non-dimensional amplitude of the defect. For 
large enough ER (R being the Reynolds number based on the width of the defect), the 
maximum growth rate is about &, at approximately half the critical wavenumber. 
We formulate the instability conditions in the case where the flow has a finite 
extension in the downstream direction. Instability appears when E is greater than 
Rtt, where R ,  is the Reynolds number based on the downstream scale, and when the 
ratio of the defect width to the downstream scale lies in the interval [(ERL)-i, €1. 

1. Introduction 
Shear flows are of major interest in many astrophysical and geophysical situations 

because of the various instabilities they are likely to undergo, which may lead to 
turbulence and thus to enhanced transport. Despite their apparent simplicity, these 
flows often exhibit complex behaviour which is not fully understood; many of them 
are known to be unstable with respect to finite-amplitude perturbations under 
conditions where the linear theory predicts stability. 

Various techniques have been applied, with more or less success, to investigate 
such finite-amplitude instabilities, but they have failed so far with the plane Couette 
flow : a plane parallel stream of constant shear (i.e. of constant vorticity). One reason 
is that this flow has no linear instability from which one could start to explore the 
nonlinear regime, as was done for instance by Zahn et al. (1974) when dealing with 
plane Poiseuille flow. A step forward was made recently by Lerner 6 Knobloch (1988, 
hereinafter referred to as LK) who studied the influence of a small defect in an 
inviscid Couette flow on the onset of instability. The defect is chosen in such a way 
that the profile of the flow, originally purely linear, presents a local maximum of 
vorticity and thus satisfies the Rayleigh-Fjmt~rft necessary condition for instability. 
It is then possible to perform a linear analysis of the stability of the resulting flow, 
given the scaled amplitude E of the defect. The main result of this analysis is the 
existence of a long-wave instability, with the critical (downstream) wavenumber k, 
of order E ;  the corresponding solutions have a growth rate of order e. 
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More recently, Nagata (1990) produced for the first time some evidence of the 
existence of three-dimensional finite-amplitude solutions in plane Couette flow. 
These solutions are expressed as truncated modal expansions; they are obtained 
numerically by extending the bifurcation problem of a circular Couette system 
between corotating cylinders with a narrow gap to the case with zero average 
rotation. The critical Reynolds number for the appearance of those finite-amplitude 
solutions is found to be of the order of 1000. 

In contrast to Nagata, we are interested in the behaviour at large Reynolds 
numbers, which are more relevant to geophysical and astrophysical flows. For the 
same reason, we shall deal with an unbounded Couette flow. The purpose of this 
paper is therefore to extend LKs work in the two-dimensional case by including 
viscous dissipation, in order to estimate the instability threshold in terms of the 
Reynolds number characterizing the flow. Obviously, viscosity will have a stabilizing 
effect by smoothing the original defect, therefore suppressing the very source of the 
instability. For instability to occur, one must thus require the growth rate of the 
instability (O(E))  to be greater than the viscous damping rate associated with the 
defect, which is (O(l/R)) (R being the Reynolds number of the flow, based on the size 
of the defect). In other words, the amplitude of the perturbation, measured as the 
relative increase of vorticity, must be a t  least of the order of 1/R to allow the 
instability. 

But this condition may not be sufficient, since viscosity will also operate on the 
two-dimensional perturbation imposed on the mean flow. It remains to be checked 
whether the viscous decay of the perturbation will not be faster than that of the 
defect, as would be the case if the perturbation develops scales that are shorter than 
the width of the defect. To rule out this possibility, we shall solve the linear stability 
problem, including viscous dissipation. We shall assume that the decay rate of the 
defect can be neglected compared with the growth rate of the linear mode, and we 
shall check afterwards the validity of that assumption. 

2. Derivation of the dispersion relation 
2.1. The model 

We examine the stability of a two-dimensional, incompressible, plane-parallel shear 
flow, with velocity of the form U = (U( Y; E ) ,  0) ,  where E indicates the non-dimensional 
amplitude of the defect and (X, Y) are the coordinates parallel and transverse to the 
shear. The flow is unbounded in the Y-direction, both for simplicity and to avoid any 
effect of the boundaries on the instability. The model we are going to use is a discrete 
profile which is continuous but which contains discontinuities in its first derivative 
(Model B of LK). This choice is motivated by the fact that this problem can be solved 
by elementary methods (Drazin & Reid 1981). Furthermore, LKs careful analysis 
showed that results obtained with this kind of profile remain qualitatively and even 
quantitatively true for similar but smooth, continuous profiles. 

The profile of the flow is thus taken to be, in non-dimensional variables: 

y - E  if y < - 1  (region I); i y + s  if y 2 1 (region 111). 
u ( y ; e ) =  ( l + e ) y  - l < y < l ( r e g i o n I I ) ;  (1) 

The unit of length is the width d of the defect, and the unit of time is the inverse of 
the shearing rate dU/dY in the unperturbed flow (regions I and 111). 
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2.2. The perturbation equation 
As usual when dealing with plane-parallel flows, we factorize the stream function of 
the perturbation as 

@ = Re{$(y)exp[ik(x-ct)l}; 

the function $ then satisfies the Orr-Sommerfeld equation (see Drazin & Reid 1981) : 

1 a 2  

R a Y  
ik[(u-c)Y$-u”$] = -Z2$, where 9 = --k2; 

R is the Reynolds number of the perturbed flow based on the width d of the defect : 

dU d2 
dY v ’  

R = - -  

k is the wavenumber of the perturbation in the flow direction and c is its phase 
velocity. This equation, completed with the boundary conditions for an unbounded 
flow 

constitutes an eigenvalue problem for the (complex) phase speed c(k, e). Its  solution 
can be found by solving (2) in each of the regions I, I1 and 111, and then applying 
some jump conditions on $ across y = 1 to establish the dispersion relation for c. 
Drazin (1961) showed that these jump conditions are 

1 
kR 
-A$ = 0, 

- A [ 4  1 = 0 
kR ay ’ 

(3) 

These conditions are valid for any kR : in the limit kR + w , one retrieves the classical 
inviscid jump conditions. 

2.3. Simpli$cation of the problem 
If one proceeds as just stated, one has to calculate an 8 x 8 determinant, which is a 
formidable task even in the limit of small k and 1/R. Fortunately, it is possible to 
simplify the problem by looking only for symmetric solutions. 

The flow profile (1) being antisymmetric, we observe that (2) is invariant under the 
transformation y-f-y, c+-c* and $+$* (Tatsumi & Gotoh 1960). It has been 
established by Pekeris (1936) that for such a profile the most unstable (or the least 
stable) solution is unique, and therefore has a zero phase velocity (c = -c*)  and is 
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symmetric ($(y) = $*( - y)). This property holds to leading order in (kR)-'. For 
higher kR, the symmetry is broken, and solutions appear that have non-zero phase 
velocities. Since we are seeking the most unstable modes, we shall assume from now 
on that the solution is indeed symmetric, which reduces the problem to the 
computation of a 4 x 4 determinant. 

2.4. Solving the problem 

The second derivative of u being zero, the Orr-Sommerfeld equation can be put in 
a very simple form. If in each domain we let 

/3 = (ikRu')-i with 

(2) becomes [$(D2 - k 2 )  - 73 (U2 - k2) $ = 0, 

where D stands for d/dq. Note that the variable q is now also discontinuous. We have 
the following limits : 

lim ~ ( y )  =- l+e- -c  and 
- 

U + - l  

lim ~ ( y )  = l + e - c  and 
Y-l+ 

The boundary conditions are now 

- l + E - c  
1 + E  

lim ~ ( y )  = 
Y+- l+  

. J  l + E - c  
lim ~ ( y )  = ~ 

U + l -  1 + €  

(4) 

We solve (3) following the classical method (Mises 1921a, b ;  Hopf 1914). The 
solutions of [ p 3 ( D 2 - k 2 ) - r ] F  = 0 are the Airy functions A , ( z ) ( j  = 1,2 ,3)  of 
argument z = (5+ k2p2) ,  where 5 = r/P (their properties are summarized in the 
Appendix). Therefore the solutions of (4) are linear combinations of exp ( ky) and 
of two particular solutions Yj of the inhomogeneous equation (D2 - k2) $, = 
p4A, (5+k2P2) ,  which can be found by the method of variation of parameters: 

with coj (j = 1,2 ,3)  being the path of integration tending to infinity in the sectors Sj 
defined in the Appendix. Note that the scale of variation of $* is that of the argument 
of the Airy function, that is mainly ,8 = (kR)-f.  

It remains to choose the solutions @(r)  which satisfy @(r( - y))  = $ * ( q ( y ) )  and the 
boundary conditions (5) a t  infinity : 

aexpky +SY',(r) for y < - 1 ;  

$(q) = b cosh ky + ib tan (x) sinh Icy + yY3(q) for 

for y 2 1;  

- 1 < y < 1 ; (7)  I a* exp - ky + S* Yl(q) 

where ct, S and y are complex numbers, while b and x are real. 
Because of the symmetry properties of these functions, the jump conditions a t  

y = - 1 and at  y = 1 are complex conjugates of one another. We can then consider x 
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as an arbitrary phase and impose the jump conditions only at  y = - 1 (say). This 
procedure gives a relation between c, k and x. The dispersion relation is then obtained 
by eliminating x between this relation and its complex conjugate and can be written : 

(8) 4k21D,12 + (kRe)2( 1 -e-4k) IkD,-D,12 -4k2& Im [(kD3- D,)D?] = 0, 

where the Dj are the following 2 x 2 determinants: 

where c- = - (1  + E +  ie,)//?, f- = c-/( 1 + E ) :  and p = /?( 1 + 8):. It can be checked that 
in the limit kR + 00, this dispersion relation reduces to the inviscid one obtained by 
LK. 

The dispersion equation (8) depends on four parameters, namely k, R, E and ci. It 
is therefore almost impossible to explore the whole range of parameters, and so we 
shall confine our domain of exploration to wavenumbers of order E ,  where LK located 
the inviscid instability. It is then convenient to express all quantities in terms of 
the'natural variables ' h = k/E and a = & which are both of order unity. In the limit 
of small E ,  all the functions involved in the determinants can be expanded in power 
of E .  Keeping only leading orders in E and turning back to our original variables, we 
thus obtain the following dispersion relation : 

where c- = - (1  + E+ ic,)//? and /? = ( kR)-ie-in/6and B, is a complex function whose 
definition and properties are given in the Appendix. The dispersion relation given by 
(10) can be studied both analytically and numerically. The results are presented in 
the following section. 

3. Results 
3.1. Marginal stability 

The curve of marginal stability k,(w = 0) = f [a] has been computed numerically. 
The result is given in figure 1. In both limits ER + 0 and eR + m, its analytical form 
can be found using the properties of the function B, which are provided in the 
Appendix. This gives 

1 (11)  
k, x E when &+a; 

k, x s[B,(O) sin ($)]f(ER)f when ER + 0, J 
with B,(O) % 1.1. The value reached in the ER+ co limit is hardly surprising: it is the 
result obtained by LK in the inviscid case. 
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FIGURE 1 .  Curve of marginal stability. 

3.2. Maximum growth rate 
The maximum growth rate w,,,/e has been computed for several values of the 
resealed Reynolds number a. The result is displayed in figure 2. Let us recall that 
our analysis is valid only for ER % 1, which guarantees that the defect will last long 
enough for the perturbation to develop. In  the inviscid limit ER + co , the maximum 
growth rate tends to t ,  as expected from the results of LK. It is quite insensitive to 
the strength of the viscosity : even for values of ER as small as 0.1, w,,,/e is still 0.44. 
However, the value k = k,,, at which this maximum growth rate occurs decreases 
from 0.56 (inviscid limit) to 0 (infinite viscosity limit). The critical wavenumber k, 
exhibits a similar decrease. 
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FIGURE 3. Growth rate w / e  versus wavenumber k/e at different Reynolds numbers: ER = 0.01 
(circles); ER = 1 (triangles); ER = 50 (squares). 

&R Wmaxle kmaxle kcI2e 
0.1000oO0 0.4444663 7.9999998 x 0.1514543 
0.5 680000 0.4 654000 0.2000000 0.2787 105 
1 .ooo 000 0.4722691 0.2 400000 0.3247 618 
4.960000 0.4 888077 0.3 600 000 0.4 352 087 
8.920000 0.4929987 0.4000000 0.4612517 

50.50000 0.4 988 920 4.4800000 0.4 950 908 

TABLE 1. Maximum growth rate, wavenumber at which it occurs, and critical wavenumber, versus 
Reynolds number 

Some numerical results are given in table 1. For reference, we also give in figure 
3 the curve W / E  = f ( k / e )  for different ER. Those curves illustrate the influence of 
viscosity on the growth rate, the case ER = 50 (squares) corresponding to almost the 
inviscid limit. 

4. Discussion 
Our main result is that the maximum growth rate of the perturbation is little 

affected by viscous damping. Therefore, we confirm the instability condition 
suggested in the introduction : that the growth rate of the perturbation be larger than 
the decay rate of its cause (the finite-amplitude defect). 

So far, we have considered a Couette flow that is unbounded in both directions. We 
insist on this property in the cross-stream direction, because we want to avoid 
boundaries which might play an active role in the instability, in order to focus only 
on the effect of the profile defect. Note that this assumption is consistent with the 
results, since the perturbation decays exponentially far from the defect. 

But the situation is quite different in the direction of the flow, in which our 
solutions are assumed to have a periodic behaviour. In  most cases of interest, there 
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is a maximum scale allowed in that direction. When performing numerical 
simulations, such a finite scale is imposed by the computational domain. I n  a 
rotating Couette flow, to which this analysis can be extended in the narrow gap limit, 
the circular topology introduces the circumference as the limit length. The existence 
of such a minimum wavenumber has a direct impact on the threshold of the finite- 
amplitude instability, as we shall see next. 

We assume that the maximal downstream size is 2nL and we call d the width of 
the defect, as before. In  the non-dimensional units introduced in $2, the minimum 
wavenumber is then such that kmin ( 2 n L l d )  = 2.r~. To derive the instability condition, 
we thus identify the critical wavenumber with k = kmi, = A ,  where A = d / L  measures 
the relative defect width, and we introduce R,, the Reynolds number characterizing 
the flow based on the maximum downstream scale L,  

dU L2 
, - d Y  v 

R --- 

Two conditions must be satisfied. The first is that established by LK, namely that 
the relative amplitude of the defect be larger than its width: 

€ > A .  

The second has just been recalled above; it expresses that the growth rate of the 
perturbation, of order edU/dY, is larger than the decay rate of the defect, of order 
of v /d2 .  This translates into: €A2 2 R i l .  Thus the width A must lie in the interval 

(ERL)-i 5 A < e ,  

E 2 Rtf. and this is possible only if 

Refining that argument further and taking into account the decay of the amplitude 
of the defect, Gill (1965) reached a similar formula, but with a logarithmic correction : 

~ - 3 1 0 g ~  2 R,. 

This correction would increase substantially the critical Reynolds number. However, 
not only does the amplitude of the defect decrease, but its width increases with time, 
an effect which was not considered by Gill. Indeed, a localized defect evolves with 
time as t-i exp ( - Y '/4vt) according to the one-dimensional Orr-Sommerfeld 
equation. Therefore, the amplitude of the defect varies as t-f, and its width as ti. The 
viscous dissipation thus decreases with time as t- l ,  which is faster than the t-1 decline 
of the growth rate. Consequently, i t  suffices that our criterion for instability (13) be 
fulfilled at some initial time. 

The necessary condition (13), which is independent of the width of the defect, thus 
defines the threshold of the finite-amplitude instability for large Reynolds numbers. 
Although the finite-amplitude perturbation we have considered is admittedly rather 
specialized, we conjecture that the scaling (13) derived from it ought to  be more 
general. 

A confirmation of this conjecture comes from a reinterpretation of our nonlinear 
instability in terms of a 'negative viscosity' instability. The energy balance is indeed 
rather peculiar here : the large-scale perturbations, characterized by their small 
wavenumber k - E ,  draw their energy from the small-scale velocity field associated 
with the defect. Therefore, energy goes from small scale to large scale, as if through 
the influence of a negative viscosity. As shown recently by Dubrulle & Frisch (1991), 
such a phenomenon can actually occur for a wide class of two-dimensional shear flows 
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periodic in both space and time and can be proved rigorously using a multi-scale 
expansion. The influence of the basic velocity field on a given large-scale perturbation 
is then modelled by an eddy-viscosity vL given by 

Here, v is the ordinary molecular viscosity and Y is the stream function of the basic 
flow. The angular brackets represent the space-time average over the periodicities 
(only space average if the basic flow is time-independent). From (14), it is obvious 
that the (negative viscosity) instability sets in as soon as the condition 

v < (Py (15) 

is satisfied. We can translate this condition to the case studied in this paper if we 
consider the defect as the small-scale flow, the large-scale flow being the Couette flow. 
In  that case, the relevant stream function has a characteristic lengthscale of the 
order of the size of the defect and a characteristic amplitude of the order d2sdU/dY. 
We see then that the instability condition (12) derived for the Couette flow on a 
phenomenological basis is just the translation of (15), which is exact for spatially 
periodic shear flows. The condition A < E ensures that the characteristic scale of the 
perturbation - which is the downstream scale since the basic flow is unbounded - is 
larger than the characteristic scale of the defect (recall that E < 1 is an implicit 
condition of our asymptotic analysis of §2) ,  and so that the scale separation is 
fulfilled. 

This confirmation of our instability condition (12)  is reassuring. It remains to 
check whether such prediction, based on a necessary condition, is in agreement with 
the experiments. Surprisingly, very few results are available concerning instabilities 
in plane Couette flow. To our knowledge, no experiments have been performed since 
Reichardt's in 1956. Using a configuration of aspect ratio H/L' = Q ( H  and L' being 
respectively the size in the cross-stream and in the downstream direction of his 
apparatus), he found that turbulence occurred for Reynolds numbers (based on the 
channel width) greater than about R, = 1500. He observed that the turbulent mean 
flow organized itself in a slender S-shape. Assuming that the finite size of the 
apparatus did not alter the dynamics of the instability (e.g. that no boundary layers 
were present), let us estimate what would be, according to  our analysis, the 
perturbation amplitude required to trigger the finite-amplitude instability. Since 
L I H  = L'/27cH, we predict that at the critical downstream Reynolds number, R,  = 
(0.8)2R,, the amplitude of the perturbation should be at least E 2 (RL)-i = 0.1, 
implying a width of the defect of less than d = 0.08H. The velocity perturbation 
would thus be of the order of Ed/H = 0.008, thus about 0.8% of the basic velocity. 
This value seems quite plausible, if we interpret it as the level of the fluctuations 
generated in the experiment, which unfortunately could not be determined by 
Reichardt. Modern experiments on plane Couette flow would therefore be most 
welcome, with direct measurements of the instability threshold as well as finer 
descriptions of the structure of the turbulent regime. 

Another way to obtain this information is to perform numerical simulations. A few 
years ago, Orszag & Kells (1980) showed that a possible scenario leading to 
turbulence in linearly stable flows was to combine a two-dimensional decaying mode 
of finite amplitude with an infinitesimal, three-dimensional perturbation. In their 
numerical simulation of plane Couette flow, they observed that the small 
perturbation would grow exponentially above some critical Reynolds number, but 
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the low spatial resolution prevented them from pursuing the calculation into a more 
developed phase. They also noticed the important role of the inflexion points 
occurring in the mean flow profile. 

Here, we are suggesting a different scenario, namely that a one-dimensional finite- 
amplitude perturbation of the mean flow should be sufficient to lead to instability. 
Such instability will be two-dimensional at the beginning, but it is likely to become 
three-dimensional after a finite time, as observed in mixing layers, both in the 
laboratory and in numerical simulations (Lesieur et al. 1988). We are currently 
performing high-resolution computer simulations to investigate the nonlinear 
evolution of such a finite-amplitude defect (Dubrulle 1991). 

5. Conclusion 
In  this paper, we extended to viscous flows the result obtained by Lerner & 

Knobloch (1988) in the inviscid limit. We formulated the instability conditions in the 
(realistic) case where the flow has a finite extent, 2nL, in the downstream direction. 
As expected, LK’s necessary condition also holds in the viscous regime, namely that 
the relative maximum of vorticity characterizing the defect, 8, be larger than its 
relative width in the mean flow profile, d / L .  In addition, we showed that this 
magnitude E must also be larger than Rif, R, being the Reynolds number of the mean 
flow based on the downstream scale L. For a given E satisfying these conditions, 
E > Rii, the profile defect which leads to instability must have a relative width in 
the interval 

d (a,)-; < < E .  

Such finite-amplitude instabilities of shearing flows may well be the cause of the 
turbulence invoked in various geophysical and astrophysical situations to account 
for enhanced transport. In particular, we believe that the ‘turbulent viscosity ’ in 
accretion discs, which is responsible for the conversion into heat of the gravitational 
energy of the accreted matter, is due to such an instability arising in quasi-keplerian 
rotation (Zahn 1984). Such instabilities are also likely to occur in differentially 
rotating stars, where they will contribute to the vertical transport of chemicals and 
of angular momentum (Zahn 1975). 

Our special thanks goes to N. Baker whose help during the course of this work was 
greatly appreciated. We thank L. Valdettaro and N. Dolez for valuable discussions. 
Part of this work was conducted while B. D. was visiting the Astronomy Department 
of Columbia University, and was supported by grant AFOSR 89-0012 of the US Air 
Force. B. D. also acknowledges the support of a Amelia Earhart Fellowship provided 
by the ZONTA organization. 

Appendix 
In this Appendix, we summarize the definitions and the properties of the Airy 

functions which have been used in the course of this paper. A more complete account 
can be found in the Appendix A of Drazin & Reid (1981), from which most of the 
results below have been taken. 
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L( s2 )L =3 

~~ 

FIGURE 5. The paths of integration in the T-plane. 

A.l. The Airy functions A,(z) 

The Airy functions A,(z) ( j  = 1,2,3) are solution of Airy’s equationf”-zf = 0 defined 
such that A, is recessive (exponentially decaying) in the sector S, delineated in figure 
4. Any two of these functions form a pair of linearly independent solutions of Airy’s 
equation ; they are related by the connection formula 

3 

c A&) = 0 ,  

W(A,,A,) = W(A,,A,) = W(A, ,A, )  = -$i. 

(A 1) 

(A 2) 

(A 3) 

,=1 

and their Wronskians are 

More specifically, A, and A, are related to A, through the rotation formulae 

A,(z)  = e27W3A1(2e2ni/3 ), A,(z) = e-Z~i13A 1 (ze-27W 1. 

A.2. The functions A,(z;p) 
These functions have been introduced by Reid (1974) to deal with inner and outer 
expansions. The functions A,(z;  p) are solutions of the differential equation 

(AD+p-l)f = O ,  (A 4) 

where D = d/dx and A = D2-z. For p = 0, one has A,(z;O) = A,@). All we have to 
know here are the following properties of the functions of degree 1 : 

(A 5 )  A,(O; 1) = -g 
19 FLM 231 
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and 

where co, denotes a path of integration that tends to  infinity in the sector Sj. 

A.3. The functions B,(z) 

These functions are the solutions of the inhomogeneous Airy equation f”-zf = 1,  
and the index j refers here to  the sector shown in figure 4 in which B, is well 
balanced. They satisfy the same rotation formulae as the A,(z), and are related to 
them by the three connection formulae: 

A. 4. Asymptotic expansions 

We adopt the convention that phz lies in the range [-Qn,%x]. I n  terms of the 
auxiliary functions 

m 

A ( z  ; p) = in-$( 1 ) p  z - ( 2 p + 1 ) / 4  exp 6 ( 1 a,(p) 6-81 , [ s-0 
(A 8) 

where 6 = 82’ and the a,(p) are polynomials in p of degree 2s, with ao(p) = 1,  the A,(z; 
p) have the following asymptotic expansions for z 9 1 : 

In  the other sectors, one has to use the rotation formulae (A3).  The asymptotic 
expansion for the Bj(z)  is 

B ~ ( z )  N ( -  1)  ~-‘{l-$( - 1) ( -2 )  ( -  3) r3+. . .} (ZE q). (A 10) 

The asymptotic expansion of the B, in the other sectors can also be found by the 
rotation formulae (A 3). 

A.5. Integral representations 

The A,(z;p) and the B,(z) admit integral representation in the form 

A,(z;p) = 2Ri 1 /Ljt-pexp (zt-$t3)dt, 

J Bj(z)  = J I j  exp (zt -it3) dt, 

where the paths L, and I ,  are shown in figure 5.  These representations can be used for 
numerical computation. 
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